Yolov5 对象检测器的打包版本
项目描述
打包的ultralytics/yolov5
点安装yolo5
概述
您终于可以使用pip安装YOLOv5 对象检测器并轻松集成到您的项目中。
安装
- 使用 pip 安装 yolov5
(for Python >=3.7)
:
pip install yolo5
- 使用 pip 安装 yolov5
(for Python 3.6)
:
pip install "numpy>=1.18.5,<1.20" "matplotlib>=3.2.2,<4"
pip install yolov5
基本用法
import yolov5
# model
model = yolov5.load('yolov5s')
# image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
# inference
results = model(img)
# inference with larger input size
results = model(img, size=1280)
# inference with test time augmentation
results = model(img, augment=True)
# show results
results.show()
# save results
results.save(save_dir='results/')
替代用法
from yolov5 import YOLOv5
# set model params
model_path = "yolov5/weights/yolov5s.pt" # it automatically downloads yolov5s model to given path
device = "cuda" # or "cpu"
# init yolov5 model
yolov5 = YOLOv5(model_path, device)
# load images
image1 = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
image2 = 'https://github.com/ultralytics/yolov5/blob/master/data/images/bus.jpg'
# perform inference
results = yolov5.predict(image1)
# perform inference with larger input size
results = yolov5.predict(image1, size=1280)
# perform inference with test time augmentation
results = yolov5.predict(image1, augment=True)
# perform inference on multiple images
results = yolov5.predict([image1, image2], size=1280, augment=True)
# show detection bounding boxes on image
results.show()
# save results into "results/" folder
results.save(save_dir='results/')
脚本
安装包后可以调用 yolo_train、yolo_detect 和 yolo_test 命令pip
:
训练
运行以下命令以在COCO数据集上重现结果(数据集在首次使用时自动下载)。YOLOv5s/m/l/x 的训练时间在单个 V100 上为 2/4/6/8 天(多 GPU 速度快几倍)。使用--batch-size
GPU 允许的最大容量(显示 16 GB 设备的批量大小)。
$ yolo_train --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
yolov5m 40
yolov5l 24
yolov5x 16
推理
yolo_detect 命令在各种来源上运行推理,自动从最新的 YOLOv5 版本下载模型并将结果保存到runs/detect
.
$ yolo_detect --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
要在示例图像上运行推理yolov5/data/images
:
$ yolo_detect --source yolov5/data/images --weights yolov5s.pt --conf 0.25
地位
项目详情
关
yolo5-0.0.1.tar.gz的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 907dd7b3099b5666bde681b1f2af9a41040211acb3cd8888cc75667776b8b774 |
|
MD5 | bb0d67bf5bf263fecfbe92ca0ae7b13d |
|
布莱克2-256 | 6436794c29dd5c549ca6d1abfb722e289fd937bf82b4b97bfa2d4ec14480d8cc |
关
yolo5-0.0.1 -py36.py37.py38-none-any.whl 的哈希值
算法 | 哈希摘要 | |
---|---|---|
SHA256 | 66054e78abb01dfa9b34425c42f4a8c552a474656a1ae11ec86d9ede9d01bae1 |
|
MD5 | affcc00deb7632116abef4d1210cdfc4 |
|
布莱克2-256 | b00715a2969c18dd12736db37c41bdf6fdadf2ef4580c33970751a91f55d1297 |