Skip to main content

用于 3D 点云和网格的常见任务的 Python 库

项目描述

点云实用程序徽标

用于 3D 点云和网格的常见任务的 Python 库


构建工作流程

作者:弗朗西斯·威廉姆斯

如果 Point Cloud Utils 对学术出版物有贡献,请将其引用为:

@misc{point-cloud-utils,
  title = {Point Cloud Utils},
  author = {Francis Williams},
  note = {https://www.github.com/fwilliams/point-cloud-utils},
  year = {2022}
}

Point Cloud Utils (pcu)是一个实用程序库,为 3D 处理点云和三角形网格提供以下功能。有关如何使用这些的文档,请参阅示例部分:

  • 用于读取和写入许多常见网格格式(PLY、STL、OFF、OBJ、3DS、VRML 2.0、X3D、COLLADA)的实用功能。如果可以导入MeshLab,我们就可以读取了!
  • 在网格上生成点样本的一系列算法:
  • 下采样点云的实用程序:
    • 满足蓝噪声分布
    • 在体素网格上
  • 点云和网格之间的最近点
  • 点云和三角形网格的法线估计
  • 点云之间的快速 k 最近邻搜索(基于nanoflann)。
  • 点云之间的豪斯多夫距离。
  • 点云之间的倒角距离。
  • 使用Sinkhorn方法估算点云之间的 Wasserstein 距离。
  • 使用快速绕组数计算点云和网格之间的带符号距离
  • 计算网格上最接近点云的点
  • 去重点云和网格顶点
  • 使用embree 的快速射线/网格相交
  • 使用embree 的快速射线/面元相交
  • 网格平滑
  • 网格连接组件
  • 网格抽取
  • 删除点云和网格中的重复/未引用顶点
  • 使网格不漏水(基于Watertight Manifold算法)

安装

pip install point-cloud-utils

例子

示例列表

加载网格和点云

Point-Cloud-Utils 支持读取许多常见的网格格式(PLY、STL、OFF、OBJ、3DS、VRML 2.0、X3D、COLLADA)。如果可以导入MeshLab,我们就可以读取了!文件的类型是从其文件扩展名推断出来的。

如果您只需要点云或网格的一些属性,加载网格的最快方法是使用实​​用read_mesh_*程序函数之一

import point_cloud_utils as pcu

# Load vertices and faces for a mesh
v, f = pcu.load_mesh_vf("path/to/mesh")

# Load vertices and per-vertex normals
v, n = pcu.load_mesh_vn("path/to/mesh")

# Load vertices, per-vertex normals, and per-vertex-colors
v, n, c = pcu.load_mesh_vnc("path/to/mesh")

# Load vertices, faces, and per-vertex normals
v, f, n = pcu.load_mesh_vfn("path/to/mesh")

# Load vertices, faces, per-vertex normals, and per-vertex colors
v, f, n, c = pcu.load_mesh_vfnc("path/to/mesh")

对于具有更复杂属性的网格和点云,使用load_triangle_meshwhich 返回一个TriangleMesh 对象。

import point_cloud_utils as pcu

# mesh is a lightweight TriangleMesh container object holding mesh vertices, faces, and their attributes.
# Any attributes which aren't loaded (because they aren't present in the file) are set to None.
# The data in TriangleMesh is layed out as follows (run help(pcu.TriangleMesh) for more details):
# TriangleMesh:
#   vertex_data:
#       positions: [V, 3]-shaped numpy array of per-vertex positions
#       normals: [V, 3]-shaped numpy array of per-vertex normals (or None)
#       texcoords: [V, 2]-shaped numpy array of per-vertex uv coordinates (or None)
#       tex_ids: [V,]-shaped numpy array of integer indices into TriangleMesh.textures indicating which texture to
#                use at this vertex (or None)
#       colors: [V, 4]-shaped numpy array of per-vertex RBGA colors in [0.0, 1.0] (or None)
#       radius: [V,]-shaped numpy array of per-vertex curvature radii (or None)
#       quality: [V,]-shaped numpy array of per-vertex quality measures (or None)
#       flags: [V,]-shaped numpy array of 32-bit integer flags per vertex (or None)
#   face_data:
#       vertex_ids: [F, 3]-shaped numpy array of integer face indices into TrianglMesh.vertex_data.positions
#       normals: [F, 3]-shaped numpy array of per-face normals (or None)
#       colors: [F, 4]-shaped numpy array of per-face RBGA colors in [0.0, 1.0] (or None)
#       quality: [F,]-shaped numpy array of per-face quality measures (or None)
#       flags: [F,]-shaped numpy array of 32-bit integer flags per face (or None)
#
#       wedge_colors: [F, 3, 4]-shaped numpy array of per-wedge RBGA colors in [0.0, 1.0] (or None)
#       wedge_normals: [F, 3, 3]-shaped numpy array of per-wedge normals (or None)
#       wedge_texcoords: [F, 3, 2]-shaped numpy array of per-wedge] uv coordinates (or None)
#       wedge_tex_ids: [F, 3]-shaped numpy array of integer indices into TriangleMesh.textures indicating which
#                      texture to use at this wedge (or None)
#   textures: A list of paths to texture image files for this mesh
#   normal_maps: A list of paths to texture image files for this mesh
mesh = pcu.load_triangle_mesh("path/to/mesh")

# You can also load a mesh directly using the TriangleMesh class
mesh = pcu.TriangleMesh("path/to/mesh")

对于具有更复杂属性的网格和点云,使用save_triangle_meshwhich 接受大量命名参数,这些参数控制要保存的属性。

import point_cloud_utils as pcu

# save_triangle_mesh accepts a path to save to (The type of mesh  saved is determined by the file extesion),
# an array of mesh vertices of shape [V, 3], and optional arguments specifying faces, per-mesh attributes,
# per-face attributes and per-wedge attributes:
#   filename    : Path to the mesh to save. The type of file will be determined from the file extension.
#   v           : [V, 3]-shaped numpy array of per-vertex positions
#   f           : [F, 3]-shaped numpy array of integer face indices into TrianglMesh.vertex_data.positions (or None)
#   vn          : [V, 3]-shaped numpy array of per-vertex normals (or None)
#   vt          : [V, 2]-shaped numpy array of per-vertex uv coordinates (or None)
#   vc          : [V, 4]-shaped numpy array of per-vertex RBGA colors in [0.0, 1.0] (or None)
#   vq          : [V,]-shaped numpy array of per-vertex quality measures (or None)
#   vr          : [V,]-shaped numpy array of per-vertex curvature radii (or None)
#   vti         : [V,]-shaped numpy array of integer indices into TriangleMesh.textures indicating which texture to
#                 use at this vertex (or None)
#   vflags      : [V,]-shaped numpy array of 32-bit integer flags per vertex (or None)
#   fn          : [F, 3]-shaped numpy array of per-face normals (or None)
#   fc          : [F, 4]-shaped numpy array of per-face RBGA colors in [0.0, 1.0] (or None)
#   fq          : [F,]-shaped numpy array of per-face quality measures (or None)
#   fflags      : [F,]-shaped numpy array of 32-bit integer flags per face (or None)
#   wc          : [F, 3, 4]-shaped numpy array of per-wedge RBGA colors in [0.0, 1.0] (or None)
#   wn          : [F, 3, 3]-shaped numpy array of per-wedge normals (or None)
#   wt          : [F, 3, 2]-shaped numpy array of per-wedge] uv coordinates (or None)
#   wti         : [F, 3]-shaped numpy array of integer indices into TriangleMesh.textures indicating which
#   textures    : A list of paths to texture image files for this mesh
#   normal_maps : A list of paths to texture image files for this mesh
pcu.save_triangle_mesh("path/to/mesh", v=v, f=f, vn=vertex_normals, vc=vertex_colors, fn=face_normals)

# You can also directly save a pcu.TrianglMesh object
mesh.save("path/to/mesh")

保存网格和点云

Point-Cloud-Utils 支持编写许多常见的网格格式(PLY、STL、OFF、OBJ、3DS、VRML 2.0、X3D、COLLADA)。如果可以导入MeshLab,我们就可以读取了!文件的类型是从其文件扩展名推断出来的。

如果您只需要编写点云或网格的几个属性,使用save_mesh_*函数的最快方法

import point_cloud_utils as pcu

# Assume v, f, n, c are numpy arrays
# where
#   v are the mesh vertices of shape [V, 3]
#   f are the mesh face indices into v of shape [F, 3]
#   n are the mesh per-vertex normals of shape [V, 3]
#   c are the mesh per-vertex colors of shape [V, 4]
v, f, n, c = pcu.load_mesh_vfnc("input_mesh.ply")

# Save mesh vertices and faces
pcu.save_mesh_vf("path/to/mesh", v, f)

# Save mesh vertices and per-vertex normals
v, n = pcu.save_mesh_vn("path/to/mesh", v, n)

# Save mesh vertices, per-vertex normals, and per-vertex-colors
v, n, c = pcu.save_mesh_vnc("path/to/mesh", v, n, c)

# Save mesh vertices, faces, and per-vertex normals
v, f, n = pcu.save_mesh_vfn("path/to/mesh", v, f, n)

# Save vertices, faces, per-vertex normals, and per-vertex colors
v, f, n, c = pcu.save_mesh_vfnc("path/to/mesh", v, f, n, c)

使用泊松盘采样在网格上生成蓝噪声样本

使用泊松盘样本在网格上生成 10000 个样本

import point_cloud_utils as pcu

# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
# n is a nv by 3 NumPy array of vertex normals
v, f, n = pcu.load_mesh_vfn("my_model.ply")

# Generate 10000 samples on a mesh with poisson disk samples
# f_i are the face indices of each sample and bc are barycentric coordinates of the sample within a face
f_i, bc = pcu.sample_mesh_poisson_disk(v, f, n, 10000)

# Use the face indices and barycentric coordinate to compute sample positions and normals
v_poisson = pcu.interpolate_barycentric_coords(f, f_i, bc, v)
n_poisson = pcu.interpolate_barycentric_coords(f, f_i, bc, n)

在间隔约 0.01 倍边界框对角线的网格上生成蓝色噪声样本

import point_cloud_utils as pcu
import numpy as np
# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
# n is a nv by 3 NumPy array of vertex normals
v, f, n = pcu.load_mesh_vfn("my_model.ply")


# Generate samples on a mesh with poisson disk samples seperated by approximately 0.01 times
# the length of the bounding box diagonal
bbox = np.max(v, axis=0) - np.min(v, axis=0)
bbox_diag = np.linalg.norm(bbox)

# f_i are the face indices of each sample and bc are barycentric coordinates of the sample within a face
f_i, bc = pcu.sample_mesh_poisson_disk(v, f, n, 10000)

# Use the face indices and barycentric coordinate to compute sample positions and normals
v_sampled = pcu.interpolate_barycentric_coords(f, f_i, bc, v)
n_sampled = pcu.interpolate_barycentric_coords(f, f_i, bc, n)

在网格上生成随机样本

import point_cloud_utils as pcu
import numpy as np

# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
# n is a nv by 3 NumPy array of vertex normals
v, f, n = pcu.load_mesh_vfn("my_model.ply")

# Generate random samples on the mesh (v, f, n)
# f_i are the face indices of each sample and bc are barycentric coordinates of the sample within a face
f_i, bc = pcu.sample_mesh_random(v, f, num_samples=v.shape[0] * 40)

# Use the face indices and barycentric coordinate to compute sample positions and normals
v_sampled = pcu.interpolate_barycentric_coords(f, f_i, bc, v)
n_sampled = pcu.interpolate_barycentric_coords(f, f_i, bc, n)

对点云进行下采样以获得蓝噪声分布

import point_cloud_utils as pcu
import numpy as np

# v is a nv by 3 NumPy array of vertices
# n is a nv by 3 NumPy array of vertex normals
v, n = pcu.load_mesh_vn("my_model.ply")

# Downsample a point cloud by approximately 50% so that the sampled points approximately
# follow a blue noise distribution
# idx is an array of integer indices into v indicating which samples to keep
idx = pcu.downsample_point_cloud_poisson_disk(v, num_samples=int(0.5*v.shape[0]))

# Use the indices to get the sample positions and normals
v_sampled = v[idx]
n_sampled = n[idx]

在体素网格上对点云进行下采样

点云边界框内的简单下采样

import point_cloud_utils as pcu
import numpy as np

# v is a nv by 3 NumPy array of vertices
# n is a nv by 3 NumPy array of vertex normals
# c is a nv by 4 NumPy array of vertex colors
v, n, c = pcu.load_mesh_vnc("my_model.ply")

# We'll use a voxel grid with 128 voxels per axis
num_voxels_per_axis = 128

# Size of the axis aligned bounding box of the point cloud
bbox_size = v.max(0) - v.min(0)

# The size per-axis of a single voxel
sizeof_voxel = bbox_size / num_voxels_per_axis

# Downsample a point cloud on a voxel grid so there is at most one point per voxel.
# Multiple points, normals, and colors within a voxel cell are averaged together.
v_sampled, n_sampled, c_sampled = pcu.downsample_point_cloud_voxel_grid(sizeof_voxel, v, n, c)

指定体素网格在空间中的位置(例如,仅考虑点云子区域内的点)

import point_cloud_utils as pcu
import numpy as np

# v is a nv by 3 NumPy array of vertices
# n is a nv by 3 NumPy array of vertex normals
# c is a nv by 4 NumPy array of vertex colors
v, n, c = pcu.load_mesh_vnc("my_model.ply")

# We'll use a voxel grid with 128 voxels per axis
num_voxels_per_axis = 128

# Size of the axis aligned bounding box of the point cloud
bbox_size = v.max(0) - v.min(0)

# Let's say we only want to consider points in the top right corner of the bounding box
domain_min = v.min(0) + bbox_size / 2.0
domain_max = v.min(0) + bbox_size

# The size per-axis of a single voxel
sizeof_voxel = bbox_size / num_voxels_per_axis

# Downsample a point cloud on a voxel grid so there is at most one point per voxel.
# Multiple points, normals, and colors within a voxel cell are averaged together.
# min_bound and max_bound specify a bounding box in which we will downsample points
v_sampled, n_sampled, c_sampled = pcu.downsample_point_cloud_voxel_grid(sizeof_voxel, v, n, c,
                                                                        min_bound=domain_min, max_bound=domain_max)

丢弃点太少的体素

import point_cloud_utils as pcu
import numpy as np

# v is a nv by 3 NumPy array of vertices
# n is a nv by 3 NumPy array of vertex normals
# c is a nv by 4 NumPy array of vertex colors
v, n, c = pcu.load_mesh_vnc("my_model.ply")

# We'll use a voxel grid with 128 voxels per axis
num_voxels_per_axis = 128

# Size of the axis aligned bounding box of the point cloud
bbox_size = v.max(0) - v.min(0)

# The size per-axis of a single voxel
sizeof_voxel = bbox_size / num_voxels_per_axis

# We will throw away points within voxel cells containing fewer than 3 points
min_points_per_voxel = 3

# Downsample a point cloud on a voxel grid so there is at most one point per voxel.
# Multiple points, normals, and colors within a voxel cell are averaged together.
v_sampled, n_sampled, c_sampled = pcu.downsample_point_cloud_voxel_grid(sizeof_voxel, v, n, c,
                                                                        min_points_per_voxel=min_points_per_voxel)

计算网格上的最近点

import point_cloud_utils as pcu
import numpy as np

# v is a nv by 3 NumPy array of vertices
v, f = pcu.load_mesh_vf("my_model.ply")

# Generate 1000 random query points. We will find the closest point on the mesh for each of these
p = np.random.rand(1000, 3)

# For each query point, find the closest point on the mesh.
# Here:
#  - d is an array of closest distances for each query point with shape (1000,)
#  - fi is an array of closest face indices for each point with shape (1000,)
#  - bc is an array of barycentric coordinates within each face (shape (1000, 3)
#    of the closest point for each query point
d, fi, bc = pcu.closest_points_on_mesh(p, v, f)

# Convert barycentric coordinates to 3D positions
closest_points = pcu.interpolate_barycentric_coords(f, fi, bc, v)

从点云估计法线

import point_cloud_utils as pcu

# v is a nv by 3 NumPy array of vertices
v = pcu.load_mesh_v("my_model.ply")

# Estimate a normal at each point (row of v) using its 16 nearest neighbors
n = pcu.estimate_point_cloud_normals_knn(v, 16)

# Estimate a normal at each point (row of v) using its neighbors within a 0.1-radius ball
n = pcu.estimate_point_cloud_normals_ball(v, 0.1)

计算每个顶点的网格法线

import point_cloud_utils as pcu

# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
v, f = pcu.load_mesh_vf("my_model.ply")

# Estimate per-vertex normal using the average of adjacent face normals
# n is a NumPy array of shape [nv, 3] where n[i] is the normal of vertex v[i]
n = pcu.estimate_mesh_vertex_normals(v, f)

计算每个面的网格法线

import point_cloud_utils as pcu

# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
v, f = pcu.load_mesh_vf("my_model.ply")

# Estimate per-face normal using the average of adjacent face normals
# n is a NumPy array of shape [nf, 3] where n[i] is the normal of face f[i]
n = pcu.estimate_mesh_face_normals(v, f)

一致地定向网格的面

import point_cloud_utils as pcu

# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
v, f = pcu.load_mesh_vf("my_model.ply")

# Re-orient faces in a mesh so they are consistent within each connected component
# f_orient is a (nf, 3)-shaped array of re-oriented faces indexes into v
# f_comp_ids is a (nf,)-shaped array of component ids for each face
#    i.e. f_comp_ids[i] is the connected component id of face f[i] (and f_orient[i])
f_oriented, f_comp_ids = pcu.orient_mesh_faces(f)

两个点云之间的近似 Wasserstein(Sinkhorn)距离

import point_cloud_utils as pcu
import numpy as np

# a and b are arrays where each row contains a point
# Note that the point sets can have different sizes (e.g [100, 3], [111, 3])
a = np.random.rand(100, 3)
b = np.random.rand(100, 3)

# M is a 100x100 array where each entry  (i, j) is the squared distance between point a[i, :] and b[j, :]
M = pcu.pairwise_distances(a, b)

# w_a and w_b are masses assigned to each point. In this case each point is weighted equally.
w_a = np.ones(a.shape[0])
w_b = np.ones(b.shape[0])

# P is the transport matrix between a and b, eps is a regularization parameter, smaller epsilons lead to
# better approximation of the true Wasserstein distance at the expense of slower convergence
P = pcu.sinkhorn(w_a, w_b, M, eps=1e-3)

# To get the distance as a number just compute the frobenius inner product <M, P>
sinkhorn_dist = (M*P).sum()

两个点云之间的倒角距离

import point_cloud_utils as pcu
import numpy as np

# a and b are arrays where each row contains a point
# Note that the point sets can have different sizes (e.g [100, 3], [111, 3])
a = np.random.rand(100, 3)
b = np.random.rand(100, 3)

chamfer_dist = pcu.chamfer_distance(a, b)

两点云之间的豪斯多夫距离

import point_cloud_utils as pcu
import numpy as np

# Generate two random point sets
a = np.random.rand(1000, 3)
b = np.random.rand(500, 3)

# Compute one-sided squared Hausdorff distances
hausdorff_a_to_b = pcu.one_sided_hausdorff_distance(a, b)
hausdorff_b_to_a = pcu.one_sided_hausdorff_distance(b, a)

# Take a max of the one sided squared  distances to get the two sided Hausdorff distance
hausdorff_dist = pcu.hausdorff_distance(a, b)

# Find the index pairs of the two points with maximum shortest distancce
hausdorff_b_to_a, idx_b, idx_a = pcu.one_sided_hausdorff_distance(b, a, return_index=True)
assert np.abs(np.sum((a[idx_a] - b[idx_b])**2) - hausdorff_b_to_a**2) < 1e-5, "These values should be almost equal"

# Find the index pairs of the two points with maximum shortest distancce
hausdorff_dist, idx_b, idx_a = pcu.hausdorff_distance(b, a, return_index=True)
assert np.abs(np.sum((a[idx_a] - b[idx_b])**2) - hausdorff_dist**2) < 1e-5, "These values should be almost equal"

两个点云之间的 K-最近邻

import point_cloud_utils as pcu
import numpy as np

# Generate two random point sets
pts_a = np.random.rand(1000, 3)
pts_b = np.random.rand(500, 3)

k = 10

# dists_a_to_b is of shape (pts_a.shape[0], k) and contains the (sorted) distances 
# to the k nearest points in pts_b
# corrs_a_to_b is of shape (a.shape[0], k) and contains the index into pts_b of the 
# k closest points for each point in pts_a 
dists_a_to_b, corrs_a_to_b = pcu.k_nearest_neighbors(pts_a, pts_b, k)

使用劳埃德松弛在正方形和立方体中生成点样本

import point_cloud_utils as pcu

# v is a nv by 3 NumPy array of vertices
# f is an nf by 3 NumPy array of face indexes into v
v, f = pcu.load_mesh_vf("my_model.ply")

# Generate 1000 points on the mesh with Lloyd's algorithm
samples = pcu.sample_mesh_lloyd(v, f, 1000)

# Generate 100 points on the unit square with Lloyd's algorithm
samples_2d = pcu.lloyd_2d(100)

# Generate 100 points on the unit cube with Lloyd's algorithm
samples_3d = pcu.lloyd_3d(100)

计算到具有快速绕组数的三角形网格的最短符号距离

 point_cloud_utils导入  pcu将
numpy