Skip to main content

ting - T细胞受体相互作用分组

项目描述

PyPI 版本 百康达

ting - T细胞受体相互作用分组

ting 是一种通过抗原特异性聚集大规模 T 细胞受体库的工具

概要

ting [选项] -t sample.tsv -r reference.tsv -k kmer.tsv -o output.tsv

选项

所需输入


The user must provide a list of CDR3b sequences.
For compatibility reasons the tab seperated table of TCR sequences required for gliph is supported, too.

    --tcr_sequences tcr_sequences   The format of the table is tab delimited, expecting only the first
                                    column. The header is optional, but if included only use column
                                    names as shown in the example.

    --kmer_file K-MER_FILE          The k-mer file holds all 2-, 3- and 4-mers considered for local
                                    clustering. If file does not exist it will automatically be
                                    generated.

    --reference                     Reference file of naive CDR3 amino acid sequences in fasta-format.
                                    Used as control set by Fisher's exact test.

Example:

CDR3b		TRBV	TRBJ	CDR3a		TRAV		TRAJ	Sample-ID
CAADTSSGANVLTF	TRBV30	TRBJ2-6	CALSDEDTGRRALTF	TRAV19		TRAJ5	09/02171
CAATGGDRAYEQYF	TRBV2	TRBJ2-7	CAASSGANSKLTF	TRAV13-1	TRAJ56	03/04922
CAATQQGETQYF	TRBV2	TRBJ2-5	CAASYGGSARQLTF	TRAV13-1	TRAJ22	02/02591
CACVSNTEAFF	TRBV28	TRBJ1-1	CAGDLNGAGSYQLTF	TRAV25		TRAJ28	PBMC8631
CAGGKGNSPLHF	TRBV2	TRBJ1-6	CVVLRGGSQGNLIF	TRAV12-1	TRAJ42	02/02071
CAGQILAGSDTQYF	TRBV6-4	TRBJ2-3	CATASGNTPLVF	TRAV17		TRAJ29	09/00181
CAGRTGVSTDTQYF	TRBV5-1	TRBJ2-3	CAVTPGGGADGLTF	TRAV41		TRAJ45	02/02591
CAGYTGRANYGYTF	TRBV2	TRBJ1-2	CVVNGGFGNVLHC	TRAV12-1	TRAJ35	01/08733

Optional Input



    --use_structural_boundaries     If set, the first and last three amino acids will be included
                                    in kmer counting and global clustering.

    --no_global                     No global clustering will be performed.

    --no_local                      No local clustering will be performed.

    --min_kmer_occurence            Only kmers which occure at least min_kmer_occurences times in the
                                    sequence sample set will be taken in account. Default is 3.

    --max_p_value                   p-value threshold for identifying significant motifs by fisher exact test

    --gliph_minp                    probability threshold for identifying significant motifs by gliph test

    --stringent_filtering           Only TCRs starting with a cystein and ending with phenylalanine will be
                                    used (IGMT definition of CDR3 region). Default: False

    --kmers_gliph                   If set kmers are identified by the non-deterministic approach as implemented by gliph

安装

ting 可以从源代码运行或通过PyPIbioconda安装

皮皮:

pip install bio-ting

康达:

conda install -c bioconda bio-ting

例子

示例曲目可以从repertoires.tar.gz包含在example_data-folder中获得

参考文献是由gliph ( Glanville et al. ) 的作者创建的。

ting --tcr_sequences R205-L01-D704D504.tsv --reference reference.fasta --kmer_file R205-L01-D704D504_kmers.tsv -o R205-L01-D704D504_results.tsv

引文

如需引用,请参阅我们的预印本Rapid T cell receptor interaction grouping with ting。目前正在进行同行评审。

项目详情


下载文件

下载适用于您平台的文件。如果您不确定要选择哪个,请了解有关安装包的更多信息。

源分布

bio-ting-1.1.0.tar.gz (8.5 kB 查看哈希)

已上传 source

内置分布

bio_ting-1.1.0-py3-none-any.whl (9.5 kB 查看哈希

已上传 py3